USING MACHINE LEARNING FOR FORMULATING NEW WALL FUNCTIONS FOR DETACHED EDDY SIMULATION: PRESENTED AT ETMM14 [2]

Lars Davidson

Lars Davidson, M2 Fluid Dynamics Chalmers University of Technology Gothenburg, Sweden

• Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].
 - ECG signals where the machine learning algorithm should recognize certain unhealthy conditions of the heart [3].

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].
 - ECG signals where the machine learning algorithm should recognize certain unhealthy conditions of the heart [3].
 - Detecting fraud for credit card payments [4].

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].
 - ECG signals where the machine learning algorithm should recognize certain unhealthy conditions of the heart [3].
 - Detecting fraud for credit card payments [4].
 - Machine learning methods such as Support Vector Machines (SVM) and neural networks are used for solving this type of problems.

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].
 - ECG signals where the machine learning algorithm should recognize certain unhealthy conditions of the heart [3].
 - Detecting fraud for credit card payments [4].
 - Machine learning methods such as Support Vector Machines (SVM) and neural networks are used for solving this type of problems.
 - Through as much data as possible at ML?

- Machine learning (ML) is a method where known data are used for teaching the algorithm to classify another set of data.
 - Photographs where the machine learning algorithm should recognize, e.g., traffic lights [5].
 - ECG signals where the machine learning algorithm should recognize certain unhealthy conditions of the heart [3].
 - Detecting fraud for credit card payments [4].
 - Machine learning methods such as Support Vector Machines (SVM) and neural networks are used for solving this type of problems.
 - Through as much data as possible at ML?
- In my case, input and output are numerical values. Regression methods (SVR or NN) should be used [3]; I use support vector regression (SVR) methods in Python.

TRAINING: I NEED A TARGET DATABASE

$$\begin{array}{rcl} \frac{\partial \bar{\mathbf{v}}_{i}}{\partial x_{i}} & = & \mathbf{0} \\ \\ \frac{\partial \bar{\mathbf{v}}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\bar{\mathbf{v}}_{i} \bar{\mathbf{v}}_{j} \right) & = & -\frac{\partial \bar{\mathbf{p}}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[(\nu + \nu_{sgs}) \frac{\partial \bar{\mathbf{v}}_{i}}{\partial x_{j}} \right] \end{array}$$

- Fully-developed Channel flow
- IDDES. $96 \times 96 \times 96$, Reynolds number is 5 200
- Database: average in x and z

$$ar{U}_{1^{st}}(x,z) = rac{1}{\Delta X \Delta Z} \int_{x,z}^{x+\Delta X,z+\Delta Z} ar{u} dx dz$$
 $ar{u}_{ au}(x,z) = rac{1}{\Delta X \Delta Z} \int_{x,z}^{x+\Delta X,z+\Delta Z} u_{ au} dx dz$

• LES with wall functions: the object is to develop a model for the wall shear stress, $\tau_{\it W} = \rho u_{\tau}^2$

•	3 rd cell
•	2 nd cell
•	1 st cell
wall	

1 st cell	$\langle \Delta y^+ \rangle$
Location 1	12
Location 2	31
Location 3	49
Location 4	66
Location 5	76
Location 6	88
Location 7	135
Location 8	155
Location 9	207

300 independent instantaneous samples of \bar{U} stored at all 3×9 cells

- LES with wall functions: the object is to develop a model for the wall shear stress, $\tau_W = \rho u_\tau^2$
- Input data: U_P , y_P , $\partial \bar{U}/\partial y$, $\partial^2 \bar{U}/\partial^2 y$

•	3 rd cell
•	2 nd cell
•	1 st cell
 wall	

1 st cell	$\langle \Delta y^+ \rangle$
Location 1	12
Location 2	31
Location 3	49
Location 4	66
Location 5	76
Location 6	88
Location 7	135
Location 8	155
Location 9	207

300 independent instantaneous samples of \bar{U} stored at all 3×9 cells

- LES with wall functions: the object is to develop a model for the wall shear stress, $\tau_W = \rho u_\tau^2$
- Input data: U_P , y_P , $\partial \bar{U}/\partial y$, $\partial^2 \bar{U}/\partial^2 y$
- output data: u_{τ}

•	3 rd cell
•	2 nd cell
•	1 st cell
 wall	

1 st cell	$\langle \Delta y^+ \rangle$
Location 1	12
Location 2	31
Location 3	49
Location 4	66
Location 5	76
Location 6	88
Location 7	135
Location 8	155
Location 9	207

300 independent instantaneous samples of \bar{U} stored at all 3×9 cells

• LES with wall functions: the object is to develop a model for the wall shear stress, $\tau_W = \rho u_\tau^2$

, . ,	P
Input data:	U_P , y_P ,
$\partial \bar{U}/\partial y$, $\partial^2 \bar{U}$	$\bar{U}/\partial^2 y$

• output data: u_{τ}

• Non-dimensional: $\frac{u_{\tau}}{\langle u_{\tau} \rangle} = f\left(Re, y^+, T \partial \bar{U}/\partial y, \partial^2 \bar{U}/\partial y^2/(\bar{U}T^2)\right)$

•	3 rd cell
•	2 nd cell
•	1 st cell
wall	

1 st cell	$\langle \Delta y^+ \rangle$
Location 1	12
Location 2	31
Location 3	49
Location 4	66
Location 5	76
Location 6	88
Location 7	135
Location 8	155
Location 9	207

300 independent instantaneous samples of \bar{U} stored at all 3 \times 9 cells

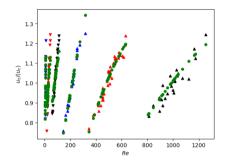
• LES with wall functions: the object is to develop a model for the wall shear stress, $\tau_W = \rho u_\tau^2$

•	3 rd cell
•	2 nd cell
•	1 st cell
wall	

- Input data: U_P , y_P , $\partial \bar{U}/\partial y$, $\partial^2 \bar{U}/\partial^2 y$
- output data: u_{τ}
- Non-dimensional: $\frac{u_{\tau}}{\langle u_{\tau} \rangle} = f\left(Re, y^+, T \partial \bar{U}/\partial y, \partial^2 \bar{U}/\partial y^2/(\bar{U}T^2)\right)$
- $T = \nu/\bar{U}^2$

1 st cell	$\langle \Delta y^+ \rangle$
Location 1	12
Location 2	31
Location 3	49
Location 4	66
Location 5	76
Location 6	88
Location 7	135
Location 8	155
Location 9	207

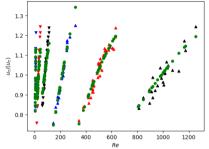
300 independent instantaneous samples of \bar{U} stored at all 3 \times 9 cells



Output on y axis

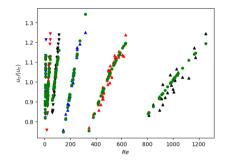
5/21

(A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲: IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. ∘: svr.



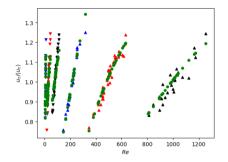
- (A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲:
- IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. o: svr.

- Output on v axis
- Input on x axis



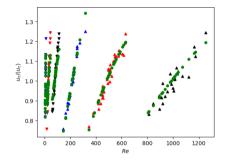
(A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲: IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. ∘: svr.

- Output on y axis
- Input on x axis
- Location 1 6 of data



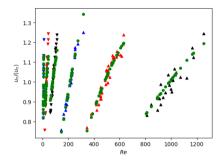
(A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲: IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. ∘: svr.

- Output on y axis
- Input on x axis
- Location 1 6 of data
- Difficult to interpolate



(A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲: IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. ∘: svr.

- Output on y axis
- Input on x axis
- Location 1 6 of data
- Difficult to interpolate
- Remedy: I included $\langle y^+ \rangle$ as input parameter = Location



(A) ▲: IDDES, Location 1; ▲: IDDES, Location 2; ▲: IDDES, Location 3; ▼: IDDES, Location 4; ▼: IDDES, Location 5; ▼: IDDES, Location 6. ∘: svr.

- Output on y axis
- Input on x axis
- Location 1 6 of data
- Difficult to interpolate
- Remedy: I included $\langle y^+ \rangle$ as input parameter = Location

5/21

• $\frac{u_{\tau}}{\langle u_{\tau} \rangle} = f(Re, \langle y^{+} \rangle)$

• Traditional wall laws: $\frac{U}{U_{\tau}} = f\left(\frac{u_{\tau}y}{v}\right)$

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

 y^+ : influence par.

 U^+ : output par.

 u_{τ} : \bar{u}/U^{+}

- Traditional wall laws: $\frac{U}{U_{\tau}} = f\left(\frac{u_{\tau}y}{v}\right)$
- Do the same in ML

```
y^+: influence par. U^+: output par.
```

$$U^+$$
: output par.

$$u_{\tau}$$
 : \bar{u}/U^{+}

$$\begin{array}{ccc} \rho u_{\tau}^2 & : & \tau_{\mathbf{W}} \text{ in } \bar{\mathbf{u}} \text{ eq.} \\ C_{\mu}^{-1/2} u_{\tau}^2 & : & \text{fix } \mathbf{k} \\ & & & \\ \frac{u_{\tau}^3}{\kappa \mathbf{y}} & : & \text{fix } \varepsilon \end{array}$$

$$C_{\mu}^{-1/2}u_{ au}^2$$
 : fix k

$$\frac{u_{\tau}^3}{\kappa V}$$
 : fix

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

 y^+ : influence par.

 U^+ : output par.

 u_{τ} : \bar{u}/U^{+}

 ρu_{τ}^2 : τ_w in $\bar{\mathbf{u}}$ eq.

 $C_{\mu}^{-1/2}u_{ au}^2$: fix k

 $\frac{u_{\tau}^3}{\kappa V}$: fix ϵ

5 10 5 100 1150 200 250 100 y. SVILI

—: ⟨ū⟩, IDDES; ▼: svrLINEAR: •: IDDES, test

data. 9% normalized error.

- Traditional wall laws: $\frac{U}{u_{\tau}} = f\left(\frac{u_{\tau}y}{\nu}\right)$
- Do the same in ML

 y^+ : influence par.

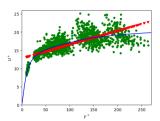
 U^+ : output par.

 u_{τ} : \bar{u}/U^{+}

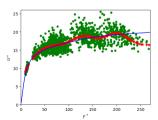
 ρu_{τ}^2 : τ_w in $\bar{\mathbf{u}}$ eq.

 $u_{\mu}^{-1/2}u_{ au}^{2}$: fix k

 $\frac{u_{\tau}^3}{\kappa V}$: fix ϵ



—: $\langle \bar{u} \rangle$, IDDES; \blacktriangledown : svrLINEAR: •: IDDES, test data. 9% normalized error.



—: ⟨ū⟩, IDDES; ▼: svr; •: IDDES, test data. 9%

• The machine-learning wall functions will be compared to wall functions based on Reichardt's law

$$rac{ar{u}_P}{u_ au} \equiv U^+ = rac{1}{\kappa} \ln(1 - 0.4y^+) + 7.8 \left[1 - \exp\left(-y^+/11
ight) - \left(y^+/11
ight) \exp\left(-y^+/3
ight)
ight]$$

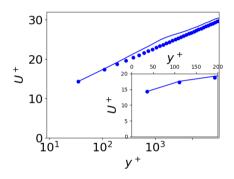
The friction velocity is then obtained by solving the implicit equation

$$u_{ au} - ar{u}_{P} \left(\ln(1 - 0.4 y^{+}) / \kappa + 7.8 \left[1 - \exp\left(-y^{+}/11
ight) - \left(y^{+}/11
ight) \exp\left(-y^{+}/3
ight)
ight]
ight)^{-1} = 0$$

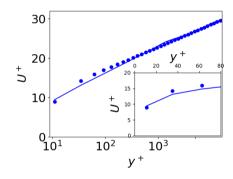
using the Newton-Raphson method scipy.optimize.newton in Python.

• \bar{u}_P denotes the wall-parallel velocity in the first, second or third wall-adjacent cell.

Results, channel flow, ML, $Re_{\tau} = 16000$



(A) $N_y = 66$, stretching 11%.

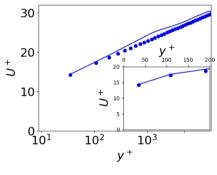


(B) $N_y = 68$, stretching 14.7%.

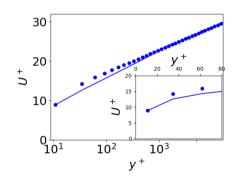
8/21

FIGURE: Channel flow. svr. $Re_{\tau} = 16\,000$. Velocity. •: Reichardt's law.

Reichardt's wall function, $Re_{\tau} = 16\,000$



(A) $N_y = 66$, stretching 11%.

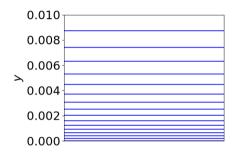


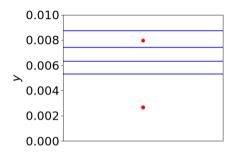
(B) $N_y = 68$, stretching 14.7%.

9/21

FIGURE: Channel flow. Reichardt's wall function. $Re_{\tau} = 16\,000$. Velocity. •: Reichardt's law.

NEW GRID STRATEGY





(A) Low-Re number IDDES grid.

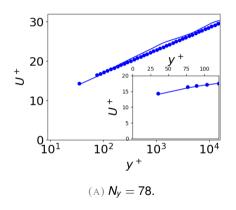
(B) Wall function grid. New grid strategy.

10 / 21

FIGURE: Different grids. ——: grid lines.

• This strategy was used in [1] for channel flow and impinging jets (RANS)

Channel flow, ML, $Re_{\tau} = 16000$, New Grid



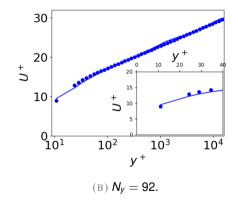
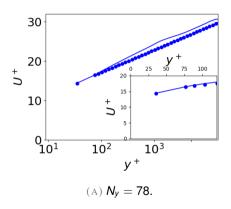


FIGURE: Channel flow. $Re_{\tau} = 16\,000$. Velocity. svr. •: Reichardt's law.

REICHARDT'S WALL FUNCTION, $Re_{\tau} = 16\,000$



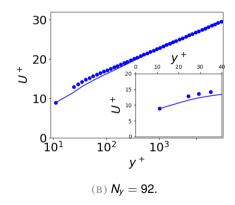
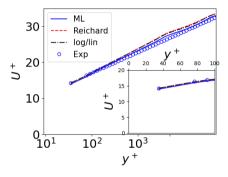
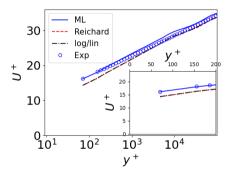


FIGURE: Channel flow. $Re_{\tau} = 16\,000$. Velocity. Reichardt's wall function. •: Reichardt's law.

Channel flow, ML, $Re_{\tau} = 50\,000$ and $Re_{\tau} = 100\,000$





(A)
$$N_{V}=92.~y_{1}^{+}=35.~\frac{(\Delta y)_{1}}{(\Delta y)_{2}}\simeq 5~Re_{ au}=50\,000~.$$

(A)
$$N_y = 92$$
. $y_1^+ = 35$. $\frac{(\Delta y)_1}{(\Delta y)_2} \simeq 5 \ Re_{\tau} = 50000$. (B) $N_y = 92$. $y_1^+ = 70$. $\frac{(\Delta y)_1}{(\Delta y)_2} \simeq 5 \ Re_{\tau} = 100000$.

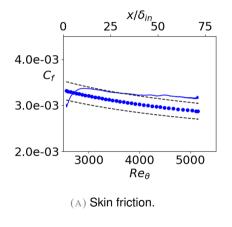
FIGURE: Channel flow. Velocity.

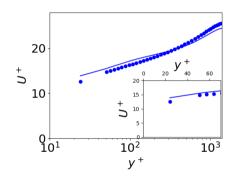
DEVELOPING BOUNDARY LAYER FLOW

- $Re_{\theta} = U_{free}\theta/\nu = 2\,550$ at the inlet.
- Domain $(96 \times 7 \times 5)\delta_{in}$.
- Grid $(550 \times 82 \times 64)$.

DEVELOPING BOUNDARY LAYER FLOW

• u_{τ} computed using 3rd cell



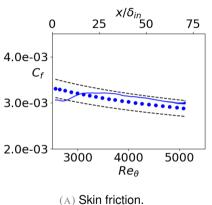


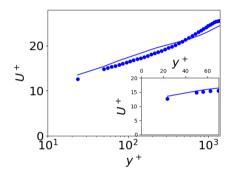
(B) Velocity at $Re_{\theta} = 4000$. Markers: DNS [6]

15 / 21

FIGURE: Boundary layer flow. $Re_{\theta} = 2500$ at inlet. svr. $N_{\nu} = 82$

DEVELOPING BOUNDARY LAYER FLOW, $2\Delta x$, $2\Delta z$



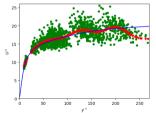


(B) Velocity at $Re_{\theta} = 4\,000$. Markers: DNS [6]

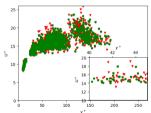
FIGURE: Boundary layer flow. svr. $N_v = 82$, $N_k = 32$, $\Delta x_{in} = 2\Delta x_{in,base}$

ATTEMPT 3

- Instantaneous data are used for training svr
- svr finds the time-averaged regression line (shown by ▼ in Fig. A)
- If I want *instantaneous* u_{τ} , I could find nearest neighbour (shown by in Fig. B)

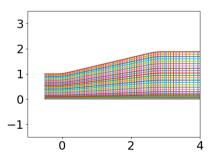


(A) — : ⟨ū⟩, IDDES; ▼: svr: •: IDDES, target data. 9% normalized error.

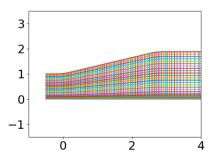


(B) Nearest neighbor using Python's scipy.spatial.KDTree ▼: KDTree; •: IDDES, target data; 0.7% normalized error.

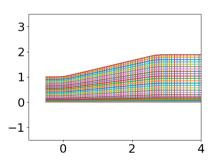
Inlet: precursor wall-resolved LES of flow in a half-channel at $Re_{\tau}=2\,000$ $(Re_b = 50\,000)$. $600 \times 150 \times 300$, $0.3 < \Delta v^+ < 22$, $\Delta z^+ = 11$, $\Delta x^+ = 22$



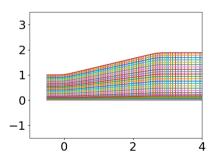
- Inlet: precursor wall-resolved LES of flow in a half-channel at $Re_{\tau}=2\,000$ ($Re_b=50\,000$). $600\times150\times300$, $0.3<\Delta y^+<22$, $\Delta z^+=11$, $\Delta x^+=22$
- Diffuser: same mash at inlet; for $x \ge 2.9$, 1.005% stretching.



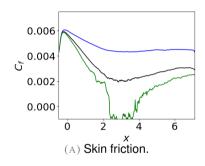
- Inlet: precursor wall-resolved LES of flow in a half-channel at $Re_{\tau}=2\,000$ ($Re_b=50\,000$). $600\times150\times300$, $0.3<\Delta y^+<22$, $\Delta z^+=11$, $\Delta x^+=22$
- Diffuser: same mash at inlet; for $x \ge 2.9$, 1.005% stretching.
- Diffusion angle: $0 \le \theta \le 18^{\circ}$

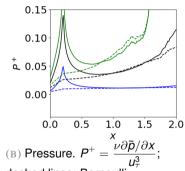


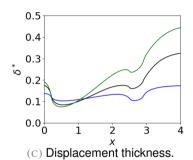
- Inlet: precursor wall-resolved LES of flow in a half-channel at $Re_{\tau}=2\,000$ ($Re_b=50\,000$). $600\times150\times300$, $0.3<\Delta y^+<22$, $\Delta z^+=11$, $\Delta x^+=22$
- Diffuser: same mash at inlet; for $x \ge 2.9$, 1.005% stretching.
- Diffusion angle: $0 \le \theta \le 18^{\circ}$
- Upper wall: slip



Diffuser, results: $6 < \theta < 18^{\circ}$







dashed lines: Bernoulli

FIGURE:
$$\alpha = 6^{\circ}$$
: $\alpha = 10^{\circ}$: $\alpha = 14^{\circ}$: $\alpha = 18^{\circ}$:

Conclusions

- Machine Learning (svr) wall functions have been developed
- Good results for channel flow placing the wall-adjacent cell at different locations
- Good results for developing boundary layer flow
- Training the svr with steady or instantaneous data: same results
- Training nearest neighbor (Python's scipy.spatial.KDTree) with instantaneous data: same results

REFERENCES

- [1] J.-A. Bäckar and L. Davidson. Evaluation of numerical wall functions on the axisymmetric impinging jet using OpenFOAM. *International Journal of Heat and Fluid Flow*, 67:27–42, 2017.
- [2] L. Davidson. Using machine learning for formulating new wall functions for detached eddy simulation. In 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM14), barcelona/Digital, Spain 6–8 September, 2023.
- [3] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas Schön. *Machine Learning: A First Course for Engineers and Scientists*. Cambridge University Press, 2022.
- [4] Menneni Rachana, Jegadeesan Ramalingam, Gajula Ramana, Adigoppula Tejaswi, Sagar Mamidala, and G Srikanth. Fraud detection of credit card using machine learning. *GIS-Zeitschrift für Geoinformatik*, 8:1421–1436, 10 2021.
- [5] Sudarshana S Rao and Santosh R Desai. Machine learning based traffic light detection and ir sensor based proximity sensing for autonomous cars. In *Proceedings*of the International Conference on International Conference