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THE K — w TURBULENCE MODEL

The Wilcox k — w turbulence model reads [4]
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The standard coefficients are used, i.e. C,1 =5/9, C,2 = 3/40, o = 0, = 2 and
C, = 0.09.
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FULLY-DEVELOPED CHANNEL FLOW, K — w MODEL, Re. = 5200
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(A) Mean velocity.

FiGURE: Fully-developed channel flow. Solid lines: k — w; dashed lines:DNS [3].

e The mean flow, shear stress (and hence the turbulent viscosity, v;) agree well

CHALMERS B YA G



FULLY-DEVELOPED CHANNEL FLOW, K — w MODEL, Re. = 5200
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(A) Mean velocity. (B) Turb. kinetic energy.

FiGURE: Fully-developed channel flow. Solid lines: k — w; dashed lines:DNS [3].

e The mean flow, shear stress (and hence the turbulent viscosity, v;) agree well
¢ But not the turbulent, kinetic energy
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FULLY-DEVELOPED CHANNEL FLOW, K — w MODEL, Re. = 5200
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(c) Terms in k equation.

FIGURE: Fully-developed channel flow. Solid lines: k — w; dashed lines:DNS [3].

e The mean flow, shear stress (and hence the turbulent viscosity, v;) agree well
¢ But not the turbulent, kinetic energy
¢ |t seems to be because the diffusion of k is poorly predicted

www.tfd.chalmers.se/lada

CHALMERS

Lars Davidson, M2 Fluid Dynamics 3/21



FIND A NEW v ¢

¢ Our ordinary differential equation reads in fully-developed channel flow

i<u+vt —}lj)+Pk—5:Q
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FIND A NEW v ¢

¢ Our ordinary differential equation reads in fully-developed channel flow

d?kpns | dkpns dvik
dy? dy ady
where v; k is the turbulent viscosity in the kpys equation and Q = 0.
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¢ Our ordinary differential equation reads in fully-developed channel flow
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dy? dy ady
where v; k is the turbulent viscosity in the kpys equation and Q = 0.

® vk is the unknown
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FIND A NEW v ¢

¢ Our ordinary differential equation reads in fully-developed channel flow

d?kpns | dkpns dvik
dy? dy ady
where v; k is the turbulent viscosity in the kpys equation and Q = 0.

® vk is the unknown
* Kpns, PE,NS and epys are known (taken from DNS),
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FIND A NEW v ¢

¢ Our ordinary differential equation reads in fully-developed channel flow

d?kpns | dkpns dvik
dy? dy dy
where v; k is the turbulent viscosity in the kpys equation and Q = 0.

* vk is the unknown

* Kpns, PE,NS and epys are known (taken from DNS),

e First | tried to use the finite volume method
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FIND A NEW vk

¢ Our ordinary differential equation reads in fully-developed channel flow

d?kpns | dkpns dvik
dy? dy ady

where v; k is the turbulent viscosity in the kpys equation and Q = 0.

vtk is the unknown

Kpns, PENS and epys are known (taken from DNS),

First | tried to use the finite volume method

* vk = vy N in Eq. 2, will be predicted by PINN while minimizing the error Q2.
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NEURAL NETWORK (NN). PYTHON’S pyTorCcH. CRASH COURSE

o %@

\./'

e | create a NN that finds a damping function, Y = f, as a function of input X = y*
* 1input (X = (0)) 1 hidden layer with 2 neurons (a g”, a(2 )) and 1 output (Y = a$2))
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NEURAL NETWORK (NN). PYTHON’S pyTorCcH. CRASH COURSE

o %@

\./'

e | create a NN that finds a damping function, Y = f, as a function of input X = y*
* 1input (X = (0)) 1 hidden layer with 2 neurons (&; (1) all )) and 1 output (Y = a$2))

class NN (nn.Module) :
def super-___init__ (self):
self.layer_l=nn.Linear(l, 2) # Connection 0-1
self.layer_ 2=nn.Linear (2, 1) # Connection 1-2
def forward(self, x):
y = torch.nn.functional.sigmoid(self.layer 1(x)) # a 1°{ (1)}, a 2"{(1)}, hidden-layer
output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1"{(2)}, output-layer
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NEURAL NETWORK (NN). PYTHON’S pyTorCcH. CRASH COURSE

@ @
@
e | create a NN that finds a damping function, Y = f, as a function of input X = y*
* 1input (X = (0)) 1 hidden layer with 2 neurons (&; (1) all )) and 1 output (Y = a$2))

1.0

class NN (nn.Module) :

0.51
def super-___init__ (self):

0.01

output

self.layer_l=nn.Linear(l, 2) # Connection 0-1 ::;gnr:tiid

— relu/10

-0.51
self.layer_2=nn.Linear (2, 1) # Connection 1-2 _10-

-10 0 10
def forward(self, x): input

y = torch.nn.functional.sigmoid(self.layer 1(x)) # a 1°{ (1)}, a 2"{(1)}, hidden-layer

output = torch.nn.functional.sigmoid(self.layer 2 (y))
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NEURAL NETWORK (NN). FORWARD

0/‘\0

Activation 1: (1) 5 ) ( W (0) b(O))
Activation 2: a = s ( w®a® + b(O))

Output: & — s (wVa + b+ wial) + b)) = v

® sis an activation function (1inear, sigmoid, tanh,...)
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NEURAL NETWORK (NN). BACKWARD

The Python code for the simple NN model is given in the listing below

# initiate the NN model
model = NN ()

# define input, X
X=np.zeros(nj, 1))

X[:,0] = scaler_yplus.fit_transform(yplus) [:,0]
# define output, Y (f is known)
Y = f

# Training loop

for epoch in range (max_no_epoch) :

# Compute prediction and loss, L
o = model (X) #prediction

L = loss_fn(o, Y) # L=|o-Y|_2
L.backward()

* loss.backward () computes dL/dwy, dL/db;,dL/dsq, ...
e They are used to get new improved wy, by, ...
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

d?kpns . dkpns dven

kK — =
ay? dy  dy + Ppns —€ons = Q (3)

(V + Vt,NN)
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

d?kpns . dkpns dven

kK — =
ay? dy  dy + Ppns —€ons = Q (3)

(V + Vt,NN)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

d?kpns . dkpns dven

(V + Vt,NN) ay? dy dy + PgNS —epns = Q (3)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE (y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0],
# Differential equation loss
ODE_loss = (nu+nut)xk_yy + k_yxnut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss *x 2)
# b.c. loss
BC_loss = (nut[0] - nut_0) #*x 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE (y,nut)

1,),create_graph=True) [0]
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

d?kpns . dkpns dven

(V + Vt,NN) ay? dy dy + PgNS —epns = Q (3)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE (y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0],
# Differential equation loss
ODE_loss = (nu+nut)xk_yy + k_yxnut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss *x 2)
# b.c. loss
BC_loss = (nut[0] - nut_0) #*x 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE (y,nut)

* nut is the unknown

1,),create_graph=True) [0]
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

a2k dkpns dv
dyDZNS ;;VS O;;VN + Pbns — cons = Q (3)

(V + Vt,NN)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE (y, nut):

nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True) [0]
# Differential equation loss
ODE_loss = (nu+nut)xk_yy + k_yxnut_y + Pk - eps

ODE_loss = torch.sum(ODE_loss *x 2)
# b.c. loss
BC_loss = (nut[0] - nut_0) *=* 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE (y,nut)

® nut is the unknown
* k_y, for example, is dkpns/dy.
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

a2k dkpns dv
dyDZNS $IS O;;VN + Pbns — cons = Q (3)

(V + Vt,NN)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE (y, nut):

nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True) [0]
# Differential equation loss
ODE_loss = (nu+nut)xk_yy + k_yxnut_y + Pk - eps

ODE_loss = torch.sum(ODE_loss *x 2)
# b.c. loss
BC_loss = (nut[0] - nut_0) *=* 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE (y,nut)

® nut is the unknown
* k_y, for example, is dkpns/dy.
* Note that k_y and k_yy are known and constant (DNS).
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

d?kpns . dkpns dven

kK — =
ay? dy  dy + Ppns —€ons = Q (3)

(V + Vt,NN)

* The loss function, 1oss_fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE (y, nut):

nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True) [0]
# Differential equation loss
ODE_loss = (nu+nut)xk_yy + k_yxnut_y + Pk - eps

ODE_loss = torch.sum(ODE_loss *x 2)
# b.c. loss
BC_loss = (nut[0] - nut_0) *=* 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE (y,nut)

® nut is the unknown

k_y, for example, is dkpns/dy.

Note that k_y and k_yy are known and constant (DNS).

There are two losses, ODE_loss and BC_loss
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SOLVING EQ. 2 wiTH PINN.
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(A) Turbulent viscosity. (B) Prandtl number. (¢) Turbulent diffusion.

FIGURE: k equation.

e Fully-developed flow in half a channel at Re, = 5200.
* o1 NN = vt/venn (vt s the turbulent viscosity predicted by the Wilcox k — w model)
* o nn is limited to 2 (same as oy in the Wilcox k — w model)
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CFD SOLVER

¢ The Python finite volume code pyCALC-RANS [1] is used.
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CFD SOLVER

* The Python finite volume code pyCALC-RANS [1] is used.
¢ Fully vectorized (i.e. no for loops).
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CFD SOLVER

The Python finite volume code pyCALC-RANS [1] is used.

Fully vectorized (i.e. no for loops).

SIMPLEC and Wilcox k — w model

Discretization: Hybrid first-order upwind/second-order central differencing
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CFD SOLVER

The Python finite volume code pyCALC-RANS [1] is used.

Fully vectorized (i.e. no for loops).

SIMPLEC and Wilcox k — w model

Discretization: Hybrid first-order upwind/second-order central differencing
The discretized equations are solved with Python sparse matrix solvers.
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CFD, Re, = 5200

The equation below is solved is using pyCALC-RANS

d dk
d_y (1/ + Vt’NNd_y) + PENS — EDNS = 0

where v; yy is known (given by PINN) and PE,NS and eppyg are taken from DNS.
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CFD, Re, = 5200

The equation below is solved is using pyCALC-RANS

d adk
Fy <I/ + V”NNdy) + PgNS — EDNS = 0

where v; yy is known (given by PINN) and PE,NS and eppyg are taken from DNS.

— PINN s
== Wilcox k—w . .
-- DNS ™

24/
i/
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Ficure: Turbulent kinetic energy.
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FIND Cx AND C,

* | have modified the turbulent Prandtl number in the k equation so that | get correct
(larger) k
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FIND Cx AND C,
* | have modified the turbulent Prandtl number in the k equation so that | get correct

(larger) k
¢ Recall that the standard k — w gives correct v; = k/w = Kpns/wpns
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FIND Cx AND C,

* | have modified the turbulent Prandtl number in the k equation so that | get correct
(larger) k

¢ Recall that the standard k — w gives correct v; = k/w = Kpns/wpns

e | must predict a correct € = epps, i.€.
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FIND Cx AND C,

¢ | have modified the turbulent Prandtl number in the k equation so that | get correct
(larger) k

¢ Recall that the standard k — w gives correct v; = k/w = Kpns/wpns

e | must predict a correct ¢ = epps, i-€.

d < vt dKkpns
dy \ornnv  dy

> + Pkns — Ck Cukpnswons = 0
~—_———

EDNS
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FIND Cx AND C,

¢ | have modified the turbulent Prandtl number in the k equation so that | get correct
(larger) k

¢ Recall that the standard k — w gives correct v; = k/w = Kpns/wpns

e | must predict a correct ¢ = epps, i-€.

d < vt dKkpns
dy \ornnv  dy

> + Pkns — Ck Cukpnswons = 0
— ——

EDNS

¢ Finally, the w equation in the new k — w model must predict w = wpys

d (vt dwpns
dy \o, dy

WDNS
) + Cut kinNS — Cuowhys =0
DNS
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PLOT Cx AND C,»
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FIGURE: Cx and C,2 vs. y /4.
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RESULTS. CHANNEL FLOW. Re, = 2000
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(a) Velocity. (B) Turb. kinetic energy. (¢) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Re, = 2000.
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RESULTS. CHANNEL FLOW. Re, = 5200
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(B) Turb. kinetic energy.
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(¢) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Re, = 5200.
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RESULTS. CHANNEL FLOW. Re, = 10000
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(a) Velocity. (B) Turb. kinetic energy. (¢) Turbulent viscosity.

FiGure: Fully-developed channel flow. Re, = 10000.
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RESULTS. FLAT-PLATE BOUNDARY LAYER
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(A) Skin friction. (B) Veli)city. (c) Turb. kinetic energy. (D) Turbulent shear stress.

FIGURE: Flat-plate boundary layer. Profiles at Rey = 4 500.

¢ Inlet profiles from a pre-cursor RANS at Rey = 2500
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DRAWBACK/PROBLEM

¢ | have made oy, Cx and C,, functions of y/§
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DRAWBACK/PROBLEM

* | have made oy, Cx and C,,» functions of y/§
* Hence, the current formulation of the model is not applicable to re-circulating flow
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DRAWBACK/PROBLEM

* | have made oy, Cx and C,,» functions of y/§
* Hence, the current formulation of the model is not applicable to re-circulating flow

e Using Neural Network (NN), I've tried to make them functions of different input
parameters such a Py /e, P,", vt/(yu,), . ..

CHALMERS P e ———



DRAWBACK/PROBLEM

| have made oy, Ck and C,» functions of y/§

Hence, the current formulation of the model is not applicable to re-circulating flow
Using Neural Network (NN), I've tried to make them functions of different input
parameters such a Py /e, P, v/(yu,), ...

Finally, | found a good combination input parameters: v'v’/u? and v¢/(yu;) (not
shown)
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CONCLUDING REMARKS

* The k — w model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy
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CONCLUDING REMARKS

* The k — w model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

¢ | have modified ox and C_» and introduced a new Cy
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turbulent kinetic energy
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e |t works well for channel flow and flat-plate boundary layer
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CONCLUDING REMARKS

The k — w model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

| have modified o, and C_» and introduced a new Cy
It works well for channel flow and flat-plate boundary layer
Using NN, ok, C.2 and Cx are made are functions of u/v//u? and v¢/(yus,)
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https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

CONCLUDING REMARKS

The k — w model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

| have modified o, and C_» and introduced a new Cy
It works well for channel flow and flat-plate boundary layer
Using NN, ok, C.2 and Cx are made are functions of u/v//u? and v¢/(yus,)

You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN
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NEURAL NETWORK

¢ Neural Network and PINN in Python.
® Good YouTube lectures: "3Blue1Brown: But what is a neural network”; "3Blue1Brown:

gradient descent, how neural networks learn”; "3Blue1Brown: backpropagation,
intuitively”; 3Blue1Brown: backpropagation, calculus”; "Sebastian Lague: how to create

a neural network”.
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https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8
https://www.youtube.com/watch?v=hfMk-kjRv4c&t=946s
https://www.youtube.com/watch?v=hfMk-kjRv4c&t=946s
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