
USING PHYSICAL INFORMED NEURAL NETWORK (PINN) TO

IMPROVE A k − ω TURBULENCE MODEL [2]

Lars Davidson, M2 Fluid Dynamics
Chalmers University of Technology

Gothenburg, Sweden

THE k − ω TURBULENCE MODEL

The Wilcox k − ω turbulence model reads [4]

∂v̄i

∂xi
= 0

∂v̄i

∂t
+

∂v̄i v̄j

∂xj
= −1

ρ

∂p̄
∂xi

+
∂

∂xj

[
(ν + νt)

∂v̄i

∂xj

]
∂v̄jk
∂xj

= Pk +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
− Cµkω

∂v̄jω

∂xj
= Cω1

ω

k
Pk +

∂

∂xj

[(
ν +

νt

σω

)
∂ω

∂xj

]
− Cω2ω

2

Pk = νt

(
∂v̄i

∂xj
+

∂v̄j

∂xi

)
∂v̄i

∂xj
, νt =

k
ω

(1)

The standard coefficients are used, i.e. Cω1 = 5/9, Cω2 = 3/40, σk = σω = 2 and
Cµ = 0.09.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 2 / 21

FULLY-DEVELOPED CHANNEL FLOW, k − ω MODEL, Reτ = 5 200

(A) Mean velocity.

(B) Turb. kinetic energy. (C) Terms in k equation.

FIGURE: Fully-developed channel flow. Solid lines: k − ω; dashed lines:DNS [3].

• The mean flow, shear stress (and hence the turbulent viscosity, νt) agree well

• But not the turbulent, kinetic energy
• It seems to be because the diffusion of k is poorly predicted

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 3 / 21

FULLY-DEVELOPED CHANNEL FLOW, k − ω MODEL, Reτ = 5 200

(A) Mean velocity. (B) Turb. kinetic energy.

(C) Terms in k equation.

FIGURE: Fully-developed channel flow. Solid lines: k − ω; dashed lines:DNS [3].

• The mean flow, shear stress (and hence the turbulent viscosity, νt) agree well
• But not the turbulent, kinetic energy

• It seems to be because the diffusion of k is poorly predicted

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 3 / 21

FULLY-DEVELOPED CHANNEL FLOW, k − ω MODEL, Reτ = 5 200

(A) Mean velocity. (B) Turb. kinetic energy. (C) Terms in k equation.

FIGURE: Fully-developed channel flow. Solid lines: k − ω; dashed lines:DNS [3].

• The mean flow, shear stress (and hence the turbulent viscosity, νt) agree well
• But not the turbulent, kinetic energy
• It seems to be because the diffusion of k is poorly predicted

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 3 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),
• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.

• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),
• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown

• kDNS, Pk
DNS and εDNS are known (taken from DNS),

• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),

• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),
• First I tried to use the finite volume method

• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),
• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 4 / 21

NEURAL NETWORK (NN). PYTHON’S PYTORCH . CRASH COURSE

a(0)
1

a(1)
1

a(1)
2

a(2)
1

input
layer hidden layers

output
layer

• I create a NN that finds a damping function, Y ≡ f , as a function of input X ≡ y+

• 1 input (X = a(0)
1), 1 hidden layer with 2 neurons (a(1)

1 ,a(1)
2) and 1 output (Y = a(2)

1)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 21

NEURAL NETWORK (NN). PYTHON’S PYTORCH . CRASH COURSE

a(0)
1

a(1)
1

a(1)
2

a(2)
1

input
layer hidden layers

output
layer

• I create a NN that finds a damping function, Y ≡ f , as a function of input X ≡ y+

• 1 input (X = a(0)
1), 1 hidden layer with 2 neurons (a(1)

1 ,a(1)
2) and 1 output (Y = a(2)

1)

class NN(nn.Module):

def super-__init__(self):

self.layer_1=nn.Linear(1, 2) # Connection 0-1

self.layer_2=nn.Linear(2, 1) # Connection 1-2

def forward(self, x):

y = torch.nn.functional.sigmoid(self.layer_1(x)) # a_1ˆ{(1)}, a_2ˆ{(1)}, hidden-layer

output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1ˆ{(2)}, output-layer

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 21

NEURAL NETWORK (NN). PYTHON’S PYTORCH . CRASH COURSE

a(0)
1

a(1)
1

a(1)
2

a(2)
1

input
layer hidden layers

output
layer

• I create a NN that finds a damping function, Y ≡ f , as a function of input X ≡ y+

• 1 input (X = a(0)
1), 1 hidden layer with 2 neurons (a(1)

1 ,a(1)
2) and 1 output (Y = a(2)

1)

class NN(nn.Module):

def super-__init__(self):

self.layer_1=nn.Linear(1, 2) # Connection 0-1

self.layer_2=nn.Linear(2, 1) # Connection 1-2

def forward(self, x):

y = torch.nn.functional.sigmoid(self.layer_1(x)) # a_1ˆ{(1)}, a_2ˆ{(1)}, hidden-layer

output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1ˆ{(2)}, output-layer

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 5 / 21

NEURAL NETWORK (NN). FORWARD

a(0)
1

a(1)
1

a(1)
2

a(2)
1

input
layer hidden layers

output
layer

Activation 1: a(1)
1 = s(1)

1

(
w (0)

1 a(0)
1 + b(0)

1

)
Activation 2: a(1)

2 = s(1)
2

(
w (0)

2 a(0)
1 + b(0)

2

)
Output: a(2)

1 = s(2)
1

(
w (1)

1 a(1)
1 + b(1)

1 + w (1)
2 a(1)

2 + b(1)
2

)
≡ Y

• s is an activation function (linear, sigmoid, tanh, . . .)
www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 6 / 21

NEURAL NETWORK (NN). BACKWARD

The Python code for the simple NN model is given in the listing below
initiate the NN model
model = NN()
define input, X
X=np.zeros(nj,1))
X[:,0] = scaler_yplus.fit_transform(yplus)[:,0]
define output, Y (f is known)
Y = f
Training loop
for epoch in range(max_no_epoch):
Compute prediction and loss, L

o = model(X) #prediction
L = loss_fn(o, Y) # L=|o-Y|_2
L.backward()

• loss.backward() computes dL/dw1, dL/db1,dL/ds1, . . .

• They are used to get new improved w1,b1, . . .

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 7 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE(y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]

Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)

b.c. loss
BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss

loss_ODE, loss_bc = ODE(y,nut)

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE(y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]

Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)

b.c. loss
BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss

loss_ODE, loss_bc = ODE(y,nut)

• nut is the unknown

• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE(y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]

Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)

b.c. loss
BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss

loss_ODE, loss_bc = ODE(y,nut)

• nut is the unknown
• k y, for example, is dkDNS/dy .

• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE(y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]

Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)

b.c. loss
BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss

loss_ODE, loss_bc = ODE(y,nut)

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).

• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

def ODE(y, nut):
nut_y = torch.autograd(nut, y, torch.ones(x.size()[0], 1,),create_graph=True)[0]

Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)

b.c. loss
BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss

loss_ODE, loss_bc = ODE(y,nut)

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 8 / 21

SOLVING EQ. 2 WITH PINN.

(A) Turbulent viscosity. (B) Prandtl number. (C) Turbulent diffusion.

FIGURE: k equation.

• Fully-developed flow in half a channel at Reτ = 5 200.
• σt ,NN = νt/νt ,NN (νt is the turbulent viscosity predicted by the Wilcox k − ω model)
• σt ,NN is limited to 2 (same as σk in the Wilcox k − ω model)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 9 / 21

CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.

• Fully vectorized (i.e. no for loops).
• SIMPLEC and Wilcox k − ω model
• Discretization: Hybrid first-order upwind/second-order central differencing
• The discretized equations are solved with Python sparse matrix solvers.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 21

CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.
• Fully vectorized (i.e. no for loops).

• SIMPLEC and Wilcox k − ω model
• Discretization: Hybrid first-order upwind/second-order central differencing
• The discretized equations are solved with Python sparse matrix solvers.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 21

CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.
• Fully vectorized (i.e. no for loops).
• SIMPLEC and Wilcox k − ω model

• Discretization: Hybrid first-order upwind/second-order central differencing
• The discretized equations are solved with Python sparse matrix solvers.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 21

CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.
• Fully vectorized (i.e. no for loops).
• SIMPLEC and Wilcox k − ω model
• Discretization: Hybrid first-order upwind/second-order central differencing

• The discretized equations are solved with Python sparse matrix solvers.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 21

CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.
• Fully vectorized (i.e. no for loops).
• SIMPLEC and Wilcox k − ω model
• Discretization: Hybrid first-order upwind/second-order central differencing
• The discretized equations are solved with Python sparse matrix solvers.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 10 / 21

CFD, Reτ = 5 200

The equation below is solved is using pyCALC-RANS

d
dy

(
ν + νt ,NN

dk
dy

)
+ Pk

DNS − εDNS = 0

where νt ,NN is known (given by PINN) and Pk
DNS and εDNS are taken from DNS.

FIGURE: Turbulent kinetic energy.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 11 / 21

CFD, Reτ = 5 200

The equation below is solved is using pyCALC-RANS

d
dy

(
ν + νt ,NN

dk
dy

)
+ Pk

DNS − εDNS = 0

where νt ,NN is known (given by PINN) and Pk
DNS and εDNS are taken from DNS.

FIGURE: Turbulent kinetic energy.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 11 / 21

FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 21

FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 21

FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 21

FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 21

FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 12 / 21

PLOT Ck AND Cω2

FIGURE: Ck and Cω2 vs. y/δ.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 13 / 21

RESULTS. CHANNEL FLOW. Reτ = 2 000

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 2 000.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 14 / 21

RESULTS. CHANNEL FLOW. Reτ = 5 200

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 5 200.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 15 / 21

RESULTS. CHANNEL FLOW. Reτ = 10 000

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 10 000.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 16 / 21

RESULTS. FLAT-PLATE BOUNDARY LAYER

(A) Skin friction. (B) Velocity. (C) Turb. kinetic energy. (D) Turbulent shear stress.

FIGURE: Flat-plate boundary layer. Profiles at Reθ = 4 500.

• Inlet profiles from a pre-cursor RANS at Reθ = 2 500

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 17 / 21

DRAWBACK/PROBLEM

• I have made σk , CK and Cω2 functions of y/δ

• Hence, the current formulation of the model is not applicable to re-circulating flow
• Using Neural Network (NN), I’ve tried to make them functions of different input

parameters such a Pk/ε, P+
k , νt/(yuτ), . . .

• Finally, I found a good combination input parameters: u′v ′/u2
τ and νt/(yuτ) (not

shown)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 18 / 21

DRAWBACK/PROBLEM

• I have made σk , CK and Cω2 functions of y/δ
• Hence, the current formulation of the model is not applicable to re-circulating flow

• Using Neural Network (NN), I’ve tried to make them functions of different input
parameters such a Pk/ε, P+

k , νt/(yuτ), . . .
• Finally, I found a good combination input parameters: u′v ′/u2

τ and νt/(yuτ) (not
shown)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 18 / 21

DRAWBACK/PROBLEM

• I have made σk , CK and Cω2 functions of y/δ
• Hence, the current formulation of the model is not applicable to re-circulating flow
• Using Neural Network (NN), I’ve tried to make them functions of different input

parameters such a Pk/ε, P+
k , νt/(yuτ), . . .

• Finally, I found a good combination input parameters: u′v ′/u2
τ and νt/(yuτ) (not

shown)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 18 / 21

DRAWBACK/PROBLEM

• I have made σk , CK and Cω2 functions of y/δ
• Hence, the current formulation of the model is not applicable to re-circulating flow
• Using Neural Network (NN), I’ve tried to make them functions of different input

parameters such a Pk/ε, P+
k , νt/(yuτ), . . .

• Finally, I found a good combination input parameters: u′v ′/u2
τ and νt/(yuτ) (not

shown)

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 18 / 21

CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer
• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2

τ and νt/(yuτ)

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer
• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2

τ and νt/(yuτ)

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer

• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2
τ and νt/(yuτ)

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer
• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2

τ and νt/(yuτ)

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer
• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2

τ and νt/(yuτ)

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 19 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

NEURAL NETWORK

• Neural Network and PINN in Python.
• Good YouTube lectures: ”3Blue1Brown: But what is a neural network”; ”3Blue1Brown:

gradient descent, how neural networks learn”; ”3Blue1Brown: backpropagation,
intuitively”; ”3Blue1Brown: backpropagation, calculus”; ”Sebastian Lague: how to create
a neural network”.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 20 / 21

https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8
https://www.youtube.com/watch?v=hfMk-kjRv4c&t=946s
https://www.youtube.com/watch?v=hfMk-kjRv4c&t=946s

REFERENCES

[1] L. Davidson. pyCALC-RANS: a 2D Python code for RANS. Division of Fluid
Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers University of
Technology, Gothenburg
Download the code here, 2021.

[2] L. Davidson. Using physical informed neural network (PINN) to improve a k-omega
turbulence model. In 15th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements (ETMM15), Dubrovnik on 22-24 September,
2025.

[3] M. Lee and R. D. Moser. Direct numerical simulation of turbulent channel flow up to
Reτ ≈ 5200. Journal of Fluid Mechanics, 774:395–415, 2015.

[4] D. C. Wilcox. Reassessment of the scale-determining equation. AIAA Journal,
26(11):1299–1310, 1988.

www.tfd.chalmers.se/˜lada Lars Davidson, M2 Fluid Dynamics 21 / 21

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

	References

