
USING PHYSICAL INFORMED NEURAL NETWORK (PINN) TO

IMPROVE A k − ω TURBULENCE MODEL [2]

Lars Davidson, M2 Fluid Dynamics
Chalmers University of Technology

Gothenburg, Sweden



THE k − ω TURBULENCE MODEL

The Wilcox k − ω turbulence model reads [4]

∂v̄i

∂xi
= 0

∂v̄i

∂t
+

∂v̄i v̄j

∂xj
= −1

ρ

∂p̄
∂xi

+
∂

∂xj

[
(ν + νt)

∂v̄i

∂xj

]
∂v̄jk
∂xj

= Pk +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
− Cµkω

∂v̄jω

∂xj
= Cω1

ω

k
Pk +

∂

∂xj

[(
ν +

νt

σω

)
∂ω

∂xj

]
− Cω2ω

2

Pk = νt

(
∂v̄i

∂xj
+

∂v̄j

∂xi

)
∂v̄i

∂xj
, νt =

k
ω

(1)

The standard coefficients are used, i.e. Cω1 = 5/9, Cω2 = 3/40, σk = σω = 2 and
Cµ = 0.09.
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FULLY-DEVELOPED CHANNEL FLOW, k − ω MODEL, Reτ = 5 200

(A) Mean velocity.

(B) Turb. kinetic energy. (C) Terms in k equation.

FIGURE: Fully-developed channel flow. Solid lines: k − ω; dashed lines:DNS [3].

• The mean flow, shear stress (and hence the turbulent viscosity, νt ) agree well

• But not the turbulent, kinetic energy
• It seems to be because the diffusion of k is poorly predicted
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FIND A NEW νt ,k

• Our ordinary differential equation reads in fully-developed channel flow

d
dy

(
ν + νt ,k

dk
dy

)
+ Pk − ε = Q

(
ν + νt ,k

) d2kDNS

dy2 +
dkDNS

dy
dνt ,k

dy
+ Pk

DNS − εDNS = Q (2)

where νt ,k is the turbulent viscosity in the kDNS equation and Q = 0.
• νt ,k is the unknown
• kDNS, Pk

DNS and εDNS are known (taken from DNS),
• First I tried to use the finite volume method
• νt ,k = νt ,NN in Eq. 2, will be predicted by PINN while minimizing the error Q2.
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NEURAL NETWORK (NN). PYTHON’S PYTORCH . CRASH COURSE

a(0)
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input
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output
layer

• I create a NN that finds a damping function, Y ≡ f , as a function of input X ≡ y+

• 1 input (X = a(0)
1 ), 1 hidden layer with 2 neurons (a(1)

1 ,a(1)
2 ) and 1 output (Y = a(2)

1 )
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class NN(nn.Module):

def super-__init__(self):

self.layer_1=nn.Linear(1, 2) # Connection 0-1

self.layer_2=nn.Linear(2, 1) # Connection 1-2

def forward(self, x):

y = torch.nn.functional.sigmoid(self.layer_1(x)) # a_1ˆ{(1)}, a_2ˆ{(1)}, hidden-layer

output = torch.nn.functional.sigmoid(self.layer_2(y)) # a_1ˆ{(2)}, output-layer
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NEURAL NETWORK (NN). FORWARD
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Activation 1: a(1)
1 = s(1)
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Activation 2: a(1)
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Output: a(2)
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• s is an activation function (linear, sigmoid, tanh, . . . )
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NEURAL NETWORK (NN). BACKWARD

The Python code for the simple NN model is given in the listing below
# initiate the NN model
model = NN()
# define input, X
X=np.zeros(nj,1))
X[:,0] = scaler_yplus.fit_transform(yplus)[:,0]
# define output, Y (f is known)
Y = f
# Training loop
for epoch in range(max_no_epoch):
# Compute prediction and loss, L

o = model(X) #prediction
L = loss_fn(o, Y) # L=|o-Y|_2
L.backward()

• loss.backward() computes dL/dw1, dL/db1,dL/ds1, . . .

• They are used to get new improved w1,b1, . . .
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PHYSICS INFORMED NEURAL NETWORK (PINN). PYTHON’S PYTORCH

(
ν + νt ,NN

) d2kDNS

dy2 +
dkDNS

dy
dνt ,NN

dy
+ Pk

DNS − εDNS = Q (3)

• The loss function, loss fn, on Slide 7 is replaced with Eq. 3. Python code:

• nut is the unknown
• k y, for example, is dkDNS/dy .
• Note that k y and k yy are known and constant (DNS).
• There are two losses, ODE loss and BC loss
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SOLVING EQ. 2 WITH PINN.

(A) Turbulent viscosity. (B) Prandtl number. (C) Turbulent diffusion.

FIGURE: k equation.

• Fully-developed flow in half a channel at Reτ = 5 200.
• σt ,NN = νt/νt ,NN (νt is the turbulent viscosity predicted by the Wilcox k − ω model)
• σt ,NN is limited to 2 (same as σk in the Wilcox k − ω model)
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CFD SOLVER

• The Python finite volume code pyCALC-RANS [1] is used.

• Fully vectorized (i.e. no for loops).
• SIMPLEC and Wilcox k − ω model
• Discretization: Hybrid first-order upwind/second-order central differencing
• The discretized equations are solved with Python sparse matrix solvers.
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CFD, Reτ = 5 200

The equation below is solved is using pyCALC-RANS

d
dy

(
ν + νt ,NN

dk
dy

)
+ Pk

DNS − εDNS = 0

where νt ,NN is known (given by PINN) and Pk
DNS and εDNS are taken from DNS.

FIGURE: Turbulent kinetic energy.
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FIND Ck AND Cω2

• I have modified the turbulent Prandtl number in the k equation so that I get correct
(larger) k

• Recall that the standard k − ω gives correct νt = k/ω = kDNS/ωDNS

• I must predict a correct ε = εDNS, i.e.

d
dy

(
νt

σt ,NN

dkDNS

dy

)
+ Pk

DNS − CkCµkDNSωDNS︸ ︷︷ ︸
εDNS

= 0

• Finally, the ω equation in the new k − ω model must predict ω = ωDNS

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

ωDNS

kDNS
Pk

DNS − Cω2ω
2
DNS = 0
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PLOT Ck AND Cω2

FIGURE: Ck and Cω2 vs. y/δ.
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RESULTS. CHANNEL FLOW. Reτ = 2 000

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 2 000.
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RESULTS. CHANNEL FLOW. Reτ = 5 200

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 5 200.
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RESULTS. CHANNEL FLOW. Reτ = 10 000

(A) Velocity. (B) Turb. kinetic energy. (C) Turbulent viscosity.

FIGURE: Fully-developed channel flow. Reτ = 10 000.
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RESULTS. FLAT-PLATE BOUNDARY LAYER

(A) Skin friction. (B) Velocity. (C) Turb. kinetic energy. (D) Turbulent shear stress.

FIGURE: Flat-plate boundary layer. Profiles at Reθ = 4 500.

• Inlet profiles from a pre-cursor RANS at Reθ = 2 500
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DRAWBACK/PROBLEM

• I have made σk , CK and Cω2 functions of y/δ

• Hence, the current formulation of the model is not applicable to re-circulating flow
• Using Neural Network (NN), I’ve tried to make them functions of different input

parameters such a Pk/ε, P+
k , νt/(yuτ ), . . .

• Finally, I found a good combination input parameters: u′v ′/u2
τ and νt/(yuτ ) (not

shown)
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CONCLUDING REMARKS

• The k − ω model has been modified using PINN so that it accurately predicts the
turbulent kinetic energy

• I have modified σk and Cω2 and introduced a new Ck

• It works well for channel flow and flat-plate boundary layer
• Using NN, σk , Cω2 and Ck are made are functions of u′v ′/u2

τ and νt/(yuτ )

• You can download the ETMM15 paper, pyCALC-RANS and PINN scripts here or
Google pyCALC-RANS PINN
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NEURAL NETWORK

• Neural Network and PINN in Python.
• Good YouTube lectures: ”3Blue1Brown: But what is a neural network”; ”3Blue1Brown:

gradient descent, how neural networks learn”; ”3Blue1Brown: backpropagation,
intuitively”; ”3Blue1Brown: backpropagation, calculus”; ”Sebastian Lague: how to create
a neural network”.
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https://www.youtube.com/watch?v=IHZwWFHWa-w
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