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Introduction

At Wikipedia, Neural network (NN) is described as a computational model inspired by the
structure and functions of biological neural networks. Artificial neuron models that mimic
biological neurons have also recently been investigated and shown to significantly improve
performance. These are connected by edges, which model the synapses in the brain. Each
artificial neuron receives signals from connected neurons, which processes them and sends
a signal to other connected neurons. The "signal" is a real number, and the output of each
neuron is in this report computed by a linear function of its inputs which is multiplied by an
activation function. The strength of the signal at each connection is determined by the
weights and biases of the linear function, which are updated during the learning process in
order to reduce the loss. The loss is defined as the difference between the predicted output

and the correct solution (called the target).

Tensors

Tensor in the computer world simply means a multidimensional array. A scalar is a zero-
dimensional tensor, which is a single number.
A leaf tensor is a tensor that is a leaf (in the sense of a graph theory) of a computation graph.

[ will talk discuss about leafs below.

The requires_grad = True for a tensor tells PyTorch that it should remember how this tensor
is used in further computations. For now, think of tensors with requires_grad=True as

variables, while tensors with requires_grad=False as constants.


https://www.tfd.chalmers.se/~lada
https://en.wikipedia.org/wiki/Neural_network_(machine_learning)

Leafs and requires_grad

Let's start by creating a few tensors and checking their properties requires_grad and is_leaf.

import torch

a = torch.tensor([3.], requires grad=True)
b=a*a

c = torch.tensor([5.])

d=c*c

print(a.requires grad)
print(b.requires grad)
print(c.requires grad)
print(d.requires grad, '\n')
print(a.is leaf)

print(b.is leaf)

print(c.is leaf)

print(d.is leaf)

The requires_grad=True statement tells PyTorch to

1. store all mathematical operations (addition, multiplication ...) involving a

2. store the gradient of any new tensor that is created from a
In PyTorch, leaf tensors are either
1. direct input (i.e. not calculated from other tensors) and have requires_grad=True.

Example: neural network weights that are randomly initialized. 2. do not require gradients at

all, regardless of whether they are direct input or computed. These are just constants.

Hence, a is a leaf because it is an input variable, and b is not because it is a result of a

multiplication. a is set to requires_grad, so b inherits this property.
cis a leaf because it is an input variable

The reason d.is_leaf is True stems from the PyTorch convention that all tensors for which

requires_grad is set to False are considered leaf tensors.

All Tensors that have requires_grad = False will be leaf Tensors by convention.
Mathematically, d is not a leaf (since it results from another operation, ¢ * ¢), but gradient
computation will never extend beyond it. In other words, there will not be any derivative with

respect to c. This allows d to be treated as a leaf.

The requires_grad property is inherited, i.e. d has requires_grad = False which is inherited

from c.

computinga = torch.tensor([7.], requires grad=True)
b = torch.tensor([8.], requires grad=True)



The grad_fn attribute

| create another tensor @ from a and b as

Q = a**3 - 3%b

In PyTorch, tensors can have a grad_fn attribute. When a tensor is created by a
mathematical operation, PyTorch keeps track of the operation that created it using the
grad_fn. This is part of the computational graph, which is a directed acyclic graph (DAG).

print(a.requires grad)
print(b.requires grad)
print(Q.requires grad)
print(a.grad)
print(b.grad)
print(Q.grad fn)

a and b are created with requires_grad=True and that attribute is inherited by Q. The
tensors a.grad and b.grad are still not defined because | have not executed the .backward()

command.

The grad_fn is an object that represents the operation that created the tensor. It has a
backward method, which is used to compute the gradients during the backward pass. If a
tensor is created by the user directly (e.g., torch.tensor(2.0, requires_grad=True)}), its

grad_fnis None because it is a leaf tensor in the computational graph.

Now | will compute the gradients by a backward pass. Verify that the gradients Q) /9a and
0Q /Ob have been computed

Q.backward()
print('dQ/da',a.grad)
print('dQ/db',b.grad)

The .grad_fn attribute is used to analyze the mathematical operations for (). Below is was
used to visualize the autograd graph using the agtree2dot package which can be

downloaded at https://fleuret.org/francois/


https://fleuret.org/francois/
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The figure above was generated by the code in the cell below.

import agtree2dot
agtree2dot.save dot(Q,

{
a: 'a',
b: 'b',
Q: 'Q',
3

open('./Q.dot', 'w'))
# dot -T png Q.dot -o Q.png

print(Q.grad fn)
print(Q.grad fn.next functions)

The first line (object = SubBackward0) of the output shows that @) is obtained by a
subtraction i.e. —3b. This corresponds to the second box from the top in the graph above

The second line show the two prior operations (object = PowBackwardO and
MulBackwardO) which correspond to a® and the multiplication of 3 and b. They form two
branches, 0 and 1. Branch O is shown below

print(Q.grad fn.next functions[0][0].next functions)
print(Q.grad fn.next functions[0][0].next functions[0][0].variable)
print(Q.grad fn.next functions[0][0].next functions[0][0].variable is a)

Line 1 shows that the variable is accumulated. The value of the variable is printed at the
second line and the third line confirms that it is a. Hence, you see that branch 0 is the left

branch in the graph above. Next, let's look at branch 1.



print(Q.grad fn.next functions[1][0])

print(Q.grad fn.next functions[1][0].next functions)

print(Q.grad fn.next functions[1][0].next functions[0][0].variable)
print(Q.grad fn.next functions[1][0].next functions[0][0].variable is b)

The first line says that it is a multiplication (of 3 and b). On the second line you see that the
variable has been accumulated. The value of the variable is printed at line 3 and line 4
confirms that the variable is indeed b. Branch 1 corresponds to the right branch in the graph

above.
Let's introduce another variable, P
Q=a*-3b, P=Q* = P=a"—6a’b+9p* (2)

In Python it reads

a = torch.tensor([2.], requires grad=True)
b = torch.tensor([8.], requires grad=True)
Q = a**3 - 3*p

P = Q**2

The gradient of P with respecttoaandbis

op 9 _
0Q Oa

oP 0Q

OP/8a = 6a® — 18a’b = —384, OP/0b = 50 b —6a® + 18b = 96

Note that Pytorch uses the chain-rule when computing the gradients above.

Verify that the Pytorch command backward() gives the correct answer.

P.backward()
print('dP/da =',a.grad)
print('dP/db =',b.grad)

Note that the command P.backward() deletes all intermediate gradients. If you want the

keep g—g = 2Q = 2a® — 6b = —32 you must use the command .retain_grad() command, i.e.

Q = a**3 - 3*b

P = Q**2

Q.retain grad()

a.grad = None # in order to avoid accumulation when P.backward() is calle
b.grad = None # in order to avoid accumulation when P.backward() is calle

P.backward()

print('dP/dQ =',Q.grad)
print('dP/da =',a.grad)
print('dP/db =',b.grad)

Solve the equation P = a® — 6a°b + 9b* = 0 using
autograd



Let's solve the equation P = 0 using autograd.

Define the variables which should be solved for
ist parameters = [a,Db]

a = torch.tensor([2.], requires grad=True)
b = torch.tensor([8.], requires grad=True)
Q = a**3 - 3*b

P = Q**2

#

1

#under-relaxation
alpha = 0.02

# choose optimizer
optimizer = torch.optim.Adam(params=1ist parameters, lr=alpha)

# max number of iterations
max_iter = 200

for n in range(max_iter):

optimizer.zero grad() # set a.grad and b.grad to zero

P.backward() # compute dP/da and dP/db (backward step)
optimizer.step() # update a and b with gradient descent: a = a -
Q = a**3 - 3*b # compute new Q (forward step)

P = Q**2 # compute new P (forward step)

if n%50 == 0:

print(f'iteration no: {n}, P: {P.item():.2e}, a: {a.item():.2e}, b:

autograd finds the solution a = 2.79 and b = 7.26 which gives P < 1.2- 1074,

Find the coefficients of a polynomial satisfyingy =
sin(x)

Consider the polynomial y(z) = az + bx? + cx>. | will use autograd to find the coefficients
a, band c that satisfies y = sin(x). The x vector is set to 100 equidistant points from —7 to 7
, and the coefficients are initialized to zero. Note that the coefficients must be defined by

requires_grad=True since they will be updated by autograd.

import torch

import math

import matplotlib.pyplot as plt

x = torch.linspace(-math.pi, math.pi, 100)
y = torch.sin(x)

= torch.tensor(0.,requires grad=True)
torch.tensor(0.,requires grad=True)
= torch.tensor(0.,requires grad=True)
= torch.tensor(0.,requires grad=True)

o N T o
1}

| will create a loop as in the cell above



alpha = le-5
max_iter = 4000
for n in range(max iter):
y pred = a * x + b * x ¥ 2 + ¢ * x ** 3 # compute new y (forward step
L = (y pred - y).pow(2).sum() # compute loss
.retain grad() # retain a, b and c. This 1is
.retain grad() # since the backward command
.retain grad() # delete a.grad, b.grad and c
.backward() # compute dL/da, dL/db, dL/dc
if n % 1000 == 0O:
print(f"\nEpoch {n+1}, L: {L.item():.2e}, a.grad: {a.grad:.2e}, b

r o oo

# update weights using gradient descent.

a =a - alpha * a.grad

b =Db - alpha * b.grad

c = - alpha * c.grad

# Set the the gradients after updating weights
a.grad = None

b.grad = None

c.grad = None

print(f'\na = {a.item():.2e}, b = {b.item():.2e}, ¢ = {c.item():.2e}")

The figure below shows predicted y v.

The autograd graph is seen below.
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ct the sinus curve with Neural Network (NN)

| will predict the sinus curve with NN. The code is given below.

import
import
import
import
from to
import

X

y
X = X.v
Y = y.v

torch

math

sys

matplotlib.pyplot as plt
rch import nn

agtree2dot

torch.linspace(-math.pi, math.pi, 20) # create x
torch.sin(x)

iew(-1,1) #makes the shape X[N,1]
iew(-1,1)

# Build the model:

class N
def

def

N sinus(nn.Module):

~_init (self):

super(). init ()

self.input nn.Linear(1l, 10) #axis O: number of inputs
self.hiddenl nn.Linear (10, 10)

self.hidden2 nn.Linear (10, 1) #axis 1: number of outputs

forward(self, a0):
al = nn.functional.relu(self.input(a0))
a2 = nn.functional.relu(self.hiddenl(al))



a3 = self.hidden2(x2) #output
return a3

# Create the model
torch.manual seed(42) # the same initial weights and seed are created eve
model = NN sinus()

# Define the loss function and the optimizer

loss fn = nn.MSELoss()

# learning rate = 0.0001

learning rate = 0.001

# choose optimizer

optimizer = torch.optim.Adam(params = model.parameters(), lr = learning ra

max_iter = 1000

for n in range(max iter):
y pred = model(X) # predict new y (forward step)
L = loss _fn(y pred, Y)# compute the loss, L, 1i.e. difference between ta
optimizer.zero grad() # set all gradients to zero, dL/dw 1=0, dL/db 1=0

L.backward() # compute the gradient of L w.r.t. all w and b, 1.
optimizer.step() # update w and b using gradient descent, i.e. w 1=
if n % 200 == 0: # print every 200 iteration

print(f'iter: {n}, L: {round(L.item(), 6)}")

1. The grid is created with 20 points
2. The NN_sinus model is created in with two hidden layers (hiddenl and hidden2)
3. and ten neurons (def __init__(self):)

4. A slightly smaller (for visibility)
model with two hidden layers and three neurons is presented below.

5. In the forward step, the nn.functional.relu(a_0) is used. It simply takes the input
argument, ay = x, multiplies

it with a weight, w, adds a bias, b, and the ReLU actuator, s, is applied (see the activation
functions below). The input, a1, to the top neural in the first hidden layer is then

a; = s{wopap + bo}. The expression in curly parenthesis is the arument in the ReLU
activation function. The forward step in the simplified model in the graph below is computed
as follows.

First hidden layer.

1 10 0
(1) (0) (0) (0)
a, :s{w2 9 +b2}
(1) (0) (0) (0)

Second hidden layer.



ag = {'wgl)a?) + bgl) + wgl)aél) + bgl) + wgl)a:(,}) + bgl)}
52) =5 {wgl)ag) + bﬁl) + wgl)agl) + bgl) + 'wgl)agl) + bgl)}
® = o Ll + 5+ el + 5+ a0}
Output.
o = {uPa® + 50 1+ w2 +52 + 0 + 40} =
where a:(,’?’) is returned as the predicted y, i.e. Ypred.

Q—®
NN

—/

Neural network. Two hidden layer which each have three neurons denoted by

. . 0
circles. The vectors between the neurons represent connections. Input: a( ) = x

; output: ag?’) =y
An activation function is the function which enables neural network to learn complex (non-
linear) relationships by transforming the output of the previous layer. Without activation
functions, neural network can only learn linear relationships. Three common activation

functions are shown below.

1.0
— Sigmoid
0.81 — Tanh
45'06_ — Relu
32 :
3 0.4+
0.2
0.0 :
-10 0 10
input

Different activation functions. ReLU = max(0, z); Tanh = tanh(x); Sigmoid
-1
— (1+exp(—2))

Predict a straight line using NN



In order to better understand the forward step in NN, | will write a Python script without

using PyTorch's activators and torch.nn.functional. | start be creating x and y.

import torch
from torch import nn

x = torch.linspace(0, 1, 5)
y = 4%x

X = x.view(-1,1)

Y = y.view(-1,1)

Since | will predict a straight line, y = «, | don't need any activator. The NN model is built

with the code below.

class NN line(nn.Module):

def init (self):
super(). init ()
self.input = nn.Linear(l, 2) #axis 0: number of input
self.hiddenl = nn.Linear(2, 2)
self.hidden2= nn.Linear(2, 1) #axis 1: number of output
self.input.bias.data.normal (0.,1)
self.input.weight.data.normal (0.,1)
self.hiddenl.bias.data.normal (0.,1)
self.hiddenl.weight.data.normal (0.,1)
self.hidden2.bias.data.normal (0.,1)
self.hidden2.weight.data.normal (0.,1)

def forward(self, x0):
x1 = model.input.bias.view(-1,1) + model.input.weight@x0.T
x2 = model.hiddenl.bias.view(-1,1) + model.hiddenl.weight@xl
output temp = model.hidden2.bias.view(-1,1) + model.hidden2.weight
output = output temp.view(-1,1)
return output

D =@
D ><
T@—@®
Neural network for the straight line. Two hidden layer which each have two
neurons denoted by circles.
As can be seen in the figure above, | use two hidden layers and two neurons. All
weights and biases are initialized as normal distribution with mean equal to

zero and standard deviation equal to 1. There is one input (axis O of input) and

one output (axis 1 of hidden layer no 2).The forward step is coded as above.

The commands .view(-1,1) and .T are used to reshape vectors between row and

column vectors. The symbol '@' denotes matrix multiplication. The shape of



the weights biases are given below.

input. bias. view(—1, 1) = torch. Size([2, 5])
input. weight = torch. Size([2, 1])
x0.T = torch. Size([1, 5])
output, x1 = torch. Size([2, 5])
Above: input.bias.view(-1,1)[2,5] added to matrix multiplaction of
input.weight[2,1] and x0.T[1.5] which gives x1[2.5]. Note that the size of
input.bias.view(-1,1) in the Python code really is [2,1] but Python takes care of
this.

x1 = torch. Size([2, 5]

hidden1.bias. view(—1, 1) = torch. Size([2, 5]
hiddenl.weight = torch. Size([2

output, x2 = torch. Size([2

)
)
,2])
,5])
Above: hiddenl.bias.view(-1,1)[2,5] added to matrix multiplaction of

hiddenl.weight[2,2] and x1[2.5] which gives x1[2.5]. Regarding size of

hiddenl.bias.view(-1,1) in Python code, see comment above.

x2 = torch. Size([2
hidden2.bias. view(—1, 1) = torch. Size([1
(1
([

I

Y

hidden2.weight = torch. Size
output = torch. Size

Y

5))
5))
2))
,5])

Above: hidden2.bias.view(-1,1)[1,5] added to matrix multiplaction of
hiddenl.weight[1,2] and x2[2.5] which gives output[1.5]. Regarding size of

hidden2.bias.view(-1,1) in Python code, see comment above.
Note that the weights and biases have the same values at all z points.

The iteration loop to converge the NN model is given below (it is the same as
above).

# Create the model

torch.manual seed(42)

model = NN line()

# Define the loss function and the optimizer

loss fn = nn.MSELoss()

# under-relaxation

alpha = 0.001

optimizer = torch.optim.Adam(params = model.parameters(), lr = alpha)

max_iter = 1000

for n in range(max iter):
y pred = model(X)
loss = loss fn(y pred, Y)
optimizer.zero grad()
loss.backward()



optimizer.step()
if n % 200 == 0:
print(f'Iteration: {n}, loss: {round(loss.item(), 6)}")

The figure below shows predicted y = 4

4' — target
® NN
3_
> 2
1,
0_ T T T
0.0 0.5 1.0
X
y =4z

The autograd graph is seen below.
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