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Introduction

At Wikipedia, Neural network (NN) is described as a computational model inspired by the

structure and functions of biological neural networks. Artificial neuron models that mimic

biological neurons have also recently been investigated and shown to significantly improve

performance. These are connected by edges, which model the synapses in the brain. Each

artificial neuron receives signals from connected neurons, which processes them and sends

a signal to other connected neurons. The "signal" is a real number, and the output of each

neuron is in this report computed by a linear function of its inputs which is multiplied by an

activation function. The strength of the signal at each connection is determined by the

weights and biases of the linear function, which are updated during the learning process in

order to reduce the loss. The loss is defined as the difference between the predicted output

and the correct solution (called the target).

Tensors

Tensor in the computer world simply means a multidimensional array. A scalar is a zero-

dimensional tensor, which is a single number.

A leaf tensor is a tensor that is a leaf (in the sense of a graph theory) of a computation graph.

I will talk discuss about leafs below.

The requires_grad = True for a tensor tells PyTorch that it should remember how this tensor

is used in further computations. For now, think of tensors with requires_grad=True as

variables, while tensors with requires_grad=False as constants.
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Leafs and requires_grad
Let’s start by creating a few tensors and checking their properties requires_grad and is_leaf.

import torch

a = torch.tensor([3.], requires_grad=True)

b = a * a

c = torch.tensor([5.])

d = c * c

print(a.requires_grad)

print(b.requires_grad)

print(c.requires_grad)

print(d.requires_grad,'\n')

print(a.is_leaf)

print(b.is_leaf)

print(c.is_leaf)

print(d.is_leaf)

The requires_grad=True statement tells PyTorch to

1. store all mathematical operations (addition, multiplication ...) involving 

2. store the gradient of any new tensor that is created from 

In PyTorch, leaf tensors are either

1. direct input (i.e. not calculated from other tensors) and have requires_grad=True.

Example: neural network weights that are randomly initialized. 2. do not require gradients at

all, regardless of whether they are direct input or computed. These are just constants.

Hence,  is a leaf because it is an input variable, and  is not because it is a result of a

multiplication.  is set to requires_grad, so  inherits this property.

 is a leaf because it is an input variable

The reason d.is_leaf is True stems from the PyTorch convention that all tensors for which

requires_grad is set to False are considered leaf tensors.

All Tensors that have requires_grad = False will be leaf Tensors by convention.

Mathematically,  is not a leaf (since it results from another operation, ), but gradient

computation will never extend beyond it. In other words, there will not be any derivative with

respect to . This allows  to be treated as a leaf.

The requires_grad property is inherited, i.e.  has requires_grad = False which is inherited

from .

computinga = torch.tensor([7.], requires_grad=True)

b = torch.tensor([8.], requires_grad=True)
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The grad_fn attribute

I create another tensor  from  and  as

Q = a**3 - 3*b

In PyTorch, tensors can have a grad_fn attribute. When a tensor is created by a

mathematical operation, PyTorch keeps track of the operation that created it using the

grad_fn. This is part of the computational graph, which is a directed acyclic graph (DAG).

print(a.requires_grad)

print(b.requires_grad)

print(Q.requires_grad)

print(a.grad)

print(b.grad)

print(Q.grad_fn)

 and  are created with requires_grad=True and that attribute is inherited by . The

tensors a.grad and b.grad are still not defined because I have not executed the .backward()

command.

The grad_fn is an object that represents the operation that created the tensor. It has a

backward method, which is used to compute the gradients during the backward pass. If a

tensor is created by the user directly (e.g., torch.tensor(2.0, requires_grad=True)}), its

grad_fn is None because it is a leaf tensor in the computational graph.

Now I will compute the gradients by a backward pass. Verify that the gradients  and

 have been computed

Q.backward()

print('dQ/da',a.grad)

print('dQ/db',b.grad)

The .grad_fn attribute is used to analyze the mathematical operations for . Below is was

used to visualize the autograd graph using the agtree2dot package which can be

downloaded at https://fleuret.org/francois/
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Autograd graph

The figure above was generated by the code in the cell below.

import agtree2dot

agtree2dot.save_dot(Q,

   {

    a: 'a',

    b: 'b',

    Q: 'Q',

   },

   open('./Q.dot', 'w'))

# dot -T png Q.dot -o Q.png 

print(Q.grad_fn)

print(Q.grad_fn.next_functions)

The first line (object = SubBackward0) of the output shows that  is obtained by a

subtraction i.e. . This corresponds to the second box from the top in the graph above

The second line show the two prior operations (object = PowBackward0 and

MulBackward0) which correspond to  and the multiplication of  and . They form two

branches,  and . Branch 0 is shown below

print(Q.grad_fn.next_functions[0][0].next_functions)

print(Q.grad_fn.next_functions[0][0].next_functions[0][0].variable)

print(Q.grad_fn.next_functions[0][0].next_functions[0][0].variable is a)

Line 1 shows that the variable is accumulated. The value of the variable is printed at the

second line and the third line confirms that it is . Hence, you see that branch 0 is the left

branch in the graph above. Next, let's look at branch 1.
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print(Q.grad_fn.next_functions[1][0])

print(Q.grad_fn.next_functions[1][0].next_functions)

print(Q.grad_fn.next_functions[1][0].next_functions[0][0].variable)

print(Q.grad_fn.next_functions[1][0].next_functions[0][0].variable is b)

The first line says that it is a multiplication (of  and ). On the second line you see that the

variable has been accumulated. The value of the variable is printed at line 3 and line 4

confirms that the variable is indeed . Branch 1 corresponds to the right branch in the graph

above.

Let's introduce another variable, 

In Python it reads

a = torch.tensor([2.], requires_grad=True)

b = torch.tensor([8.], requires_grad=True)

Q = a**3 - 3*b

P = Q**2 

The gradient of  with respect to  and  is

Note that Pytorch uses the chain-rule when computing the gradients above.

Verify that the Pytorch command backward() gives the correct answer.

P.backward()

print('dP/da =',a.grad)

print('dP/db =',b.grad)

Note that the command P.backward() deletes all intermediate gradients. If you want the

keep  you must use the command .retain_grad() command, i.e.

Q = a**3 - 3*b

P = Q**2 

Q.retain_grad()

a.grad = None # in order to avoid accumulation when  P.backward() is calle

b.grad = None # in order to avoid accumulation when  P.backward() is calle

P.backward()

print('dP/dQ =',Q.grad)

print('dP/da =',a.grad)

print('dP/db =',b.grad)

Solve the equation  using
autograd
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Let's solve the equation  using autograd.

a = torch.tensor([2.], requires_grad=True)

b = torch.tensor([8.], requires_grad=True)

Q = a**3 - 3*b

P = Q**2 

# Define the variables which should be solved for 

list_parameters = [a,b]

#under-relaxation

alpha = 0.02 

# choose optimizer

optimizer = torch.optim.Adam(params=list_parameters, lr=alpha)

# max number of iterations

max_iter = 200

for n in range(max_iter):

   optimizer.zero_grad()  # set a.grad and b.grad to zero

   P.backward()           # compute dP/da and dP/db (backward step)

   optimizer.step()       # update a and b with gradient descent: a = a - 

   Q = a**3 - 3*b         # compute new Q (forward step)

   P = Q**2               # compute new P (forward step)

   if n%50 == 0:

      print(f'iteration no: {n}, P: {P.item():.2e}, a: {a.item():.2e}, b: 

autograd finds the solution  and  which gives .

Find the coefficients of a polynomial satisfying y =
sin(x)

Consider the polynomial . I will use autograd to find the coefficients

,  and  that satisfies . The  vector is set to  equidistant points from  to 

, and the coefficients are initialized to zero. Note that the coefficients must be defined by

requires_grad=True since they will be updated by autograd.

import torch

import math

import matplotlib.pyplot as plt

x = torch.linspace(-math.pi, math.pi, 100)

y = torch.sin(x)

a = torch.tensor(0.,requires_grad=True)

b = torch.tensor(0.,requires_grad=True)

c = torch.tensor(0.,requires_grad=True)

d = torch.tensor(0.,requires_grad=True)

I will create a loop as in the cell above

P = 0

In [ ]:

a = 2.79 b = 7.26 P ≤ 1.2 ⋅ 10−4

y(x) = ax + bx2 + cx3

a b c y = sin(x) x 100 −π π
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alpha = 1e-5

max_iter = 4000

for n in range(max_iter):

    y_pred = a * x + b * x ** 2 + c * x ** 3 # compute new y (forward step

    L = (y_pred - y).pow(2).sum()            # compute loss

    a.retain_grad()                          # retain a, b and c. This is 

    b.retain_grad()                          # since the backward command 

    c.retain_grad()                          # delete a.grad, b.grad and c

    L.backward()                             # compute dL/da, dL/db, dL/dc 

    if n % 1000 == 0:

        print(f"\nEpoch {n+1}, L: {L.item():.2e}, a.grad: {a.grad:.2e},  b

    # update weights using gradient descent.

    a = a - alpha * a.grad

    b = b - alpha * b.grad

    c = c - alpha * c.grad

    # Set the the gradients after updating weights

    a.grad = None

    b.grad = None

    c.grad = None

    

print(f'\na = {a.item():.2e}, b = {b.item():.2e}, c = {c.item():.2e}')

The figure below shows predicted  v. 

 v. 

The autograd graph is seen below.
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Autograd graph for computing ,  and 

Predict the sinus curve with Neural Network (NN)

I will predict the sinus curve with NN. The code is given below.

import torch

import math

import sys

import matplotlib.pyplot as plt

from torch import nn

import agtree2dot

x = torch.linspace(-math.pi, math.pi, 20) # create x 

y = torch.sin(x)

X = x.view(-1,1)                          #makes the shape X[N,1]

Y = y.view(-1,1)

# Build the model:

class NN_sinus(nn.Module):

    def __init__(self):

        super().__init__()

        self.input   = nn.Linear(1, 10)  #axis 0: number of inputs

        self.hidden1 = nn.Linear(10, 10)

        self.hidden2 = nn.Linear(10, 1)  #axis 1: number of outputs

    def forward(self, a0):

        a1 = nn.functional.relu(self.input(a0))

        a2 = nn.functional.relu(self.hidden1(a1))

a b c
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        a3 = self.hidden2(x2) #output

        return a3

# Create the model

torch.manual_seed(42)  # the same initial weights and seed are created eve

model = NN_sinus()

# Define the loss function and the optimizer

loss_fn = nn.MSELoss()

# learning_rate = 0.0001

learning_rate = 0.001

# choose optimizer

optimizer = torch.optim.Adam(params = model.parameters(), lr = learning_ra

max_iter = 1000

for n in range(max_iter):

  y_pred = model(X)     # predict new y (forward step)

  L = loss_fn(y_pred, Y)# compute the loss, L,  i.e. difference between ta

  optimizer.zero_grad() # set all gradients to zero,  dL/dw_1=0, dL/db_1=0

  L.backward()          # compute the gradient of L w.r.t. all w and b, i.

  optimizer.step()      # update w and b using gradient descent, i.e. w_1=

  if n % 200 == 0:      # print every 200 iteration

     print(f'iter: {n}, L: {round(L.item(), 6)}')

1. The grid is created with 20 points

2. The NN_sinus model is created in with two hidden layers (hidden1 and hidden2)

3. and ten neurons (def __init__(self):)

4. A slightly smaller (for visibility)

model with two hidden layers and three neurons is presented below.

5. In the forward step, the nn.functional.relu(a_0) is used. It simply takes the input

argument, , multiplies

it with a weight, , adds a bias, , and the ReLU actuator, , is applied (see the activation

functions below). The input, , to the top neural in the first hidden layer is then

. The expression in curly parenthesis is the arument in the ReLU

activation function. The forward step in the simplified model in the graph below is computed

as follows.

First hidden layer.

Second hidden layer.

a0 = x0

w b s

a1

a1 = s{w0a0 + b0}
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1 = s{w(0)

1 a
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1 }
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(0)

2 a
(0)

2 + b
(0)

2 }

a
(1)
3 = s{w

(0)
3 a

(0)
3 + b

(0)
3 }



Output.

where  is returned as the predicted , i.e. .

Neural network. Two hidden layer which each have three neurons denoted by

circles. The vectors between the neurons represent connections. Input: 

; output: 

An activation function is the function which enables neural network to learn complex (non-

linear) relationships by transforming the output of the previous layer. Without activation

functions, neural network can only learn linear relationships. Three common activation

functions are shown below.

Different activation functions. ReLU ; Tanh ; Sigmoid

.

 

Predict a straight line using NN
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In order to better understand the forward step in NN, I will write a Python script without

using PyTorch's activators and torch.nn.functional. I start be creating  and .

import torch

from torch import nn

x = torch.linspace(0, 1, 5)

y = 4*x

X = x.view(-1,1)

Y = y.view(-1,1)

Since I will predict a straight line, , I don't need any activator. The NN model is built

with the code below.

class NN_line(nn.Module):

    def __init__(self):

        super().__init__()

        self.input   = nn.Linear(1, 2)  #axis 0: number of input

        self.hidden1 = nn.Linear(2, 2)

        self.hidden2= nn.Linear(2, 1)  #axis 1: number of output

        self.input.bias.data.normal_(0.,1)

        self.input.weight.data.normal_(0.,1)

        self.hidden1.bias.data.normal_(0.,1)

        self.hidden1.weight.data.normal_(0.,1)

        self.hidden2.bias.data.normal_(0.,1)

        self.hidden2.weight.data.normal_(0.,1)

    def forward(self, x0):

        x1 = model.input.bias.view(-1,1) +  model.input.weight@x0.T

        x2 = model.hidden1.bias.view(-1,1) + model.hidden1.weight@x1

        output_temp = model.hidden2.bias.view(-1,1) + model.hidden2.weight

        output = output_temp.view(-1,1)

        return output

Neural network for the straight line. Two hidden layer which each have two

neurons denoted by circles.

As can be seen in the figure above, I use two hidden layers and two neurons. All

weights and biases are initialized as normal distribution with mean equal to

zero and standard deviation equal to . There is one input (axis 0 of input) and

one output (axis 1 of hidden layer no 2).The forward step is coded as above.

The commands .view(-1,1) and .T are used to reshape vectors between row and

column vectors. The symbol '@' denotes matrix multiplication. The shape of

x y

In [ ]:

y = x
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the weights biases are given below.

Above: input.bias.view(-1,1)[2,5] added to matrix multiplaction of

input.weight[2,1] and x0.T[1.5] which gives x1[2.5]. Note that the size of

input.bias.view(-1,1) in the Python code really is [2,1] but Python takes care of

this.

Above: hidden1.bias.view(-1,1)[2,5] added to matrix multiplaction of

hidden1.weight[2,2] and x1[2.5] which gives x1[2.5]. Regarding size of

hidden1.bias.view(-1,1) in Python code, see comment above.

Above: hidden2.bias.view(-1,1)[1,5] added to matrix multiplaction of

hidden1.weight[1,2] and x2[2.5] which gives output[1.5]. Regarding size of

hidden2.bias.view(-1,1) in Python code, see comment above.

Note that the weights and biases have the same values at all  points.

The iteration loop to converge the NN model is given below (it is the same as

above).

# Create the model

torch.manual_seed(42)

model = NN_line()

# Define the loss function and the optimizer

loss_fn = nn.MSELoss()

# under-relaxation

alpha = 0.001   

optimizer = torch.optim.Adam(params = model.parameters(), lr = alpha)

max_iter = 1000

for n in range(max_iter):

    y_pred = model(X)

    loss = loss_fn(y_pred, Y)

    optimizer.zero_grad()

    loss.backward()

input. bias. view(−1, 1) = torch. Size([2, 5])

input. weight = torch. Size([2, 1])

x0.T = torch. Size([1, 5])

output, x1 = torch. Size([2, 5])

x1 = torch. Size([2, 5])

hidden1.bias. view(−1, 1) = torch. Size([2, 5])

hidden1.weight = torch. Size([2, 2])

output, x2 = torch. Size([2, 5])

x2 = torch. Size([2, 5])

hidden2.bias. view(−1, 1) = torch. Size([1, 5])

hidden2.weight = torch. Size([1, 2])

output = torch. Size([1, 5])

x
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    optimizer.step()

    if n % 200 == 0:

      print(f'Iteration: {n}, loss: {round(loss.item(), 6)}')

The figure below shows predicted 

The autograd graph is seen below.

Autograd graph for 
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